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SUMMARY 

From the earliest times it is known that a cat always falls on its feet even when dropped upside down. This 
behaviour, clearly showing that in this relation it is not correct to consider an animal body as a rigid one, was 
qualitatively understood by Lecornu in 1894. Some decades later Rademaker and ter Braak proposed a 
simple model of the animal body, yet retaining its capacity of turning freely. In this paper after a short 
historical survey, the main contribution of tile first author to it, a rational analysis of the model is given. This 
yields quantitative data on the dynamic and kinematical behaviour of the human and the animal body during 
the free fall in the air, and also while floating in water. 

1. Introduction 

The proverbial  abil i ty of  a cat to fall on its feet even when dropped upside down,  has been  the 

subject o f  a n u m b e r  of  mutua l ly  controversial theories for a long time. Led by  an, as we now 

know,  improper  approximat ion  of  the body  in considering it as a rigid one, some physicists have 

denied that  a falling cat could really tu rn  its body  as a whole, unless it communica tes  an initial 

angular velocity to itself at the time of  take-off. The inference was arrived at on the basis o f  the 

law of  conservat ion of  the angular m o m e n t u m  about  the cat 's centre of  gravity. Some investiga- 

tors have realized that  it is no t  allowable in this connec t ion  to treat the animal body  as a rigid 

one. Consequent ly ,  they have proposed to take account  of  the internal  degrees of  freedom in 

relat ion to its kinematical  behaviour.  In doing so, however, there is more than one way in which 

one can explain the ro ta t ion  of  a cat. As we will see in the sequel, two mutua l ly  compet ing 

theories have been developed. One of the two, in our  opin ion  the less plausible one, has become 

k n o w n  in the li terature on sport and, in particular,  on (compet i t ion)  diving and athletics. The 

second theory underlies the calculations of  the present paper which follow in the nex section. 

We proceed with a short historical survey. The first detailed discussion we have come across, 

was in the French Acad6mie des Sciences in 1894 when Marcy [ 1 ], a physiologist,  showed a 

series of  photographs of  a cat turning.  In the same year five papers [2]-[6] commented  upon 

Marey's experimental  results. Gu y o u  [2] gave an explanat ion compatible  with the law of  conser- 
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vation of angular momentum about the centre of gravity. He assumes an alternating torsion of 

the upper part of the body with regard to the abdomen. If during this process the cat varies the 
moment of inertia about the longitudinal axis of each part in a particular way, e.g. by adjusting 

the position of its fore- and hind-legs, he can indeed accomplish a finite overall rotation of its 

body. Although Guyou's analysis, for the most part also contained in [3]-[5], is reconcilable 
with basic laws, there are no appreciable experimental results backing it. The paper of Chaston 

[8], who conducted some experiments on the Guyou motion through the use of a turning table, 

probably has attributed to a dissemination of it in sporting circles [15], otherwise to little 

purpose. 

Lecornu [6] was the first who gave a rational explanation. According to him each body in 

the form of a bent cylinder can put itself into rotation about a straight line connecting two 

points of the bent axis of the cylinder in the following way. Each cross section of the bent 

cylinder perpendicular to the bent axis is made to rotate, e.g. by alternately contracting and 

expanding longitudinal muscles. In doing so even a snake should be able to turn round in the 

air. Probably due to the condensed form and abstract style of [6], Lecornu's idea remained 
virtually unknown outside a small circle of physicists and physiologists. By-passing a paper of 
Magnus [7], in which the emphasis is laid on the physiological aspects of the problem, we 

mention a paper of Rademaker and ter Braak [9]. They performed a new series of  experiments 
with a falling cat and, moreover, conceived a simplified model of the animal body. Instead of 

considering Lecornu's model in the form of a bent cylinder, they refer their analysis to a 

mechanical system consisting of two rigid circular cylinders which represent the upper and the 
lower part of the animal body. Applying basic laws of mechanics Rademaker and ter Braak 

were able to calculate some kinematical properties of system. Their analysis, however, is in- 
volved and, as a consequence, it is difficult to follow. A comprehensive series of tests with a 

falling cat and a diver has been carried out by McDonald [10]-[ 13]. As a result of these carefully 

implemented experiments it can be concluded that the mechanism proposed by Lecornu and by 

Rademaker and ter Braak, respectively, underlies the possibility of turning a human or an 

animal body during the free fall in the air and also while floating in water. For more historical 

details we refer to Gerritsen [ 14]. 

The purpose of this paper is to reconsider the model of Rademaker and ter Braak [9] and to 

give a rational analysis of its dynamic and kinematical behaviour. For a detailed description of 

the model we refer to the next section, the calculations of which are in keeping with the 

simplicity of the basic mechanism discussed above. Moreover, it appears possible to derive 

optimal conditions with respect to turning with the least effort. 

2. Mathematical formulation 

We consider a pair of identical, circular cylinders I and II, which are assumed to be homoge- 

neous and rigid (Fig. 1). 
The centres of gravity are denoted by C' and C", respectively, the radius is denoted by r and the 
height by ~. The axes of the cylinders are permanently coupled to each other in a point 0 and 
the lower rim of the upper cilinder I is supposed to be contiguous to the upper rim of the lower 
cylinder II in some point A, say. Further it is assumed that I and II are connected to each other, 
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Figure 1. Geometry of the model Figure 2. Angular velocities of the model 

e.g. by means of  strings stretching between the rims mentioned above. It is clear that the 

cylinders are meant as a, very crude, approximation of  the upper and lower part of  the body 

and that the strings represent the muscles. In what follows we will assume that the (massless) 

strings can expand and contract in an arbitrarily prescribed manner, rendering the system 

rheonomic. The latter is considered to move under the influence of  gravity and of  the internal 

forces exerted by the strings. Since the latter forces are in equilibrium, and as we are interested 

only in the rotations of  the system parts, we leave the translation out of  consideration and refer 

the system to a frame of  reference moving with the downward acceleration g of  gravity. In this 

way we may consider the centre of  gravity C of  the whole system as fixed in space. Specifica- 

tion of  the inclination of  the system in space is immaterial to our calculations. 

We proceed to describe the motion of  the two parts of  the body. If  as a result of  muscular 

activity the cylinders I and If, initially at rest, should acquire an angular velocity co and - w ,  

respectively, about the line OA, as indicated in Fig. 2, then a velocity in a direction perpendicu- 

lar to the plane OAC would be communicated to the centres of  gravity C' and C". Since there is 
no resultant force, an angular velocity f2 will be induced compensating for this velocity. In view of  
symmetry ~2 will rotate the whole model about an axis parallel with the line C'C" at a distance 
d, so that (Fig. 2) 
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co(-~ c o s a + r s i n a ) - ~ 2 d = 0 ,  (2.1) 

in which a is the angle of  inclination of the cylinder, as shown in Fig. 1. We assume that co and 

f2 are constant so that the meridional plane OAC'executes a stationary rotation about the line 
C'C". The ensuing calculations are referred to the, likewise rotating, cartesian coordinate systems 

X',  Y', Z '  and X",  Y", Z"  With origins C' and C", respectively. The axes X ' ,  Y', X "  and Y" 
remain in the meridional plane (Fig. 2). 

Considering first cylinder I, we find for the components of  the angular velocity co' of  I with 
respect to the reference system X', Y', Z '  

CO~x, = ~2 COS ~ + CO sin or, 

t co y, = - ~  sin a + co cos a,  

O,)~Z ' = O .  

(2.2) 

From this the components of  the vector D' of  angular momentum about C' appear to be 

D' x, = lx(~2 cos a + co sin a),  
t 

D y, = ly(-~2 sin a + co cos a), 

D' z, = 0 ,  

(2.3) 

in which I x and ly denote the moment  of  inertia about the X'-  and Y'-axis, respectively. 

Applying similar calculations to II or, shorter, from symmetry,  we find that the vector D of  the 
moment  of  momentum of  the total system with regard to C is directed along C'C" and its 
magnitude is 

D = 2{Ix(g2 cos oe + w sin oe)cos a - I y ( - U t  sin a + w cos a) sin a}. (2.4) 

Since the system started from rest, and as D obviously has to be conserved, we find that (2.4) 
must vanish. This yields 

f~= (Iy / x ) c o s i n a c o s a  
/xcos2 a + Iysin2 ~ (2.5) 

From this it is apparent that an angular velocity co controlled by muscle, can indeed give rise to 

an overall rotational velocity ~2. The sign of ~2 is seen to depend on the ratio Iy]I x. Applying 
the model to the human or animal body, we have Iy > Ix , so that ~2 > 0. ( I f  Iy = Ix, then f2 

vanishes and we have to reconsider our model. In this case there exists no finite value o f d  and, 
in order to satisfy (2.1), we introduce a uniform linear velocity replacing I2d in (2.1).) It is 

interesting to compare the material velocity v of  A with the velocity w with which the point of  
contact seemingly moves in space along a circle having its centre at C. Choosing the positive 
Z"-axis as the positive direction of these velocities, we find using (2.5) 
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and 

- l y r s i n e e + I  x ~ cosa  co 
t t 

v = -03 x 'r  - 03 3,' 2 - I x cos 2 ~ + ly sin 2 a (2.6) 

) , coso  sino rcos 
(2.7) w = (~2 co cotan o 0 sin o~ - r cos o~ = (Ix c°szee + ly sin2a)sin 

We see that for 0 < c~ < rr/2 the signs of v and 03 are always different. The sign of w, however, is 

dependent upon the ratio of some geometrical quantities. If one estimates the following values 

for a human body: ~ ~ 0,85 m, r ~ 0,15 m and a ~ 30 °, then the nominator of (2.7) becomes 

negative. 

Finally we note that, instead of proceeding from 03 and ~2, we could have started the 

calculations using different components of the angular velocity just as well. For instance, if we 

use the components 031,032 of the angular velocities of the cylinders, so that ool is directed 

along C'C" and 032 along the axis of the pertaining cylinder, then we arrive at 

I x C O S  O~ 

032- (2.8) 
031  = - -  /xCOS20~ + Iysin2 & 

As was to be expected 031 and 032 have different signs for lal < 7r/2. 

From (2.8) and 

~2 = COl + 032 cos a (2.9) 

we find 

(ly -- Ix)  sinZa cos a 032 

g2 = ixcos2eL + iysinZc~ , (2.10) 

which result is in accordance with (2.5) since w = 032 sin a. We note that in both cases (2.5) 

and (2.10) ~2 = 0 for a = 0 and c~ = 7r/2. This gives rise to consider optimal turning conditions. 

3. Optimal turning conditions 

It does not seem unreasonable to consider co to be controlled by muscle in a manner not 

depending on the angle a of inclination. If so, we can calculate the maximal value of ~2 in the 

interval 0 < a < n/2 by differentiating (2.5) with respect to a. Writing c = ( l y / I x ) - l ,  we find 

~"2m a x ¢ 

03 2~/1 +c  
(3.1) 
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occurring at 

~cr = ~ arccos . (3.2) 

Some numerical values derived from (3.1) and (3.2) have been collected in Table 1 for c > 0. 

Table 1 

c I2max/W acr 

0 
2 
5 

10 
I00 

o o  

0 
0,58 
1,02 
1,51 
4,98 

45 ° 
30 ° 
22,2 ° 
16,8 ° 
5,7 ° 
0 

On the other hand, if we consider the component 602 of the angular velocity, introduced at 

the end of the preceding section, as a primary quanti ty determined by muscular activity, then 

we have to look for the maximal value of the function (2.10). 

In this case we arrive at the following critical value of the angle a 

acr=arcsin { - 3 + ~ }  1/2 
2c ' (3.3) 

leading to a complicated expression for ~"~rnax' which we omit here. Table 2 contains some 

numerical values applying to this case. 

Table 2 

C 

0 
2 
5 

10 
100 

o o  

~2max 

G9 2 

0 
0,35 
0,52 
0,63 
0,87 
1 

O~cr 

54,7 ° 
45 o 
39,2 ° 
34,6 ° 
20,9 ° 
0 

4. Concluding remarks 

In order to apply the above numerical results to the human or animal body, we have to estimate 

the moments of inertia I x and Iy. If we retain the rude approximation that the cylinders are 

homogeneous, then 
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e=g 

Using the est imates o f  Sect ion 3 we arrive at a value c ~ 5 for the human  body .  For  animals like 

cats we probably  have to apply lower  values, say c ~ 2. F r o m  the two tables it appears: the 

slender a body  the greater the induced angular veloci ty.  The assumption underlying Table 2 is 

seen to yield somewhat  larger values for the most  favourable value ~cr of  the angle o f  inclina- 

t ion than those conta ined in Table 1. However ,  the range o f  values calculated agrees reasonably 

wi th  what  has been found exper imenta l ly .  In [11] and [12] a value ~cr ~ 45° is given in relat ion 

to cats and in [12] we find ~cr ~ 10° - 1 5 °  for a man. F r o m  [13], however ,  we est imate larger 

values for the la t ter  case, say ~cr ~ 20°.  The empirical  values shown by men  thus seem to 

con fo rm to Table 1, while the behaviour  o f  a cat is more in accordance wi th  Table 2. 
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